Read the following excerpt from the late anthropologist David Graeber’s essay, “What’s The Point if You Can’t Have Fun?” After reading, please write a reflection considering one or more of the following ideas.
Why is play a mysterious goal in our society?
How do you incorporate play and fun into your life even when it seems unintuitive to do so?
How does technology play a role in your understanding and manifestation of fun?
What’s the Point If We Can’t Have Fun?
By David Graeber
My friend June Thunderstorm and I once spent a half an hour sitting in a meadow by a mountain lake, watching an inchworm dangle from the top of a stalk of grass, twist about in every possible direction, and then leap to the next stalk and do the same thing. And so it proceeded, in a vast circle, with what must have been a vast expenditure of energy, for what seemed like absolutely no reason at all.
“All animals play,” June had once said to me. “Even ants.” She’d spent many years working as a professional gardener and had plenty of incidents like this to observe and ponder. “Look,” she said, with an air of modest triumph. “See what I mean?”
Most of us, hearing this story, would insist on proof. How do we know the worm was playing? Perhaps the invisible circles it traced in the air were really just a search for some unknown sort of prey. Or a mating ritual. Can we prove they weren’t? Even if the worm was playing, how do we know this form of play did not serve some ultimately practical purpose: exercise, or self-training for some possible future inchworm emergency?
This would be the reaction of most professional ethologists as well. Generally speaking, an analysis of animal behavior is not considered scientific unless the animal is assumed, at least tacitly, to be operating according to the same means/end calculations that one would apply to economic transactions. Under this assumption, an expenditure of energy must be directed toward some goal, whether it be obtaining food, securing territory, achieving dominance, or maximizing reproductive success—unless one can absolutely prove that it isn’t, and absolute proof in such matters is, as one might imagine, very hard to come by.
I must emphasize here that it doesn’t really matter what sort of theory of animal motivation a scientist might entertain: what she believes an animal to be thinking, whether she thinks an animal can be said to be “thinking” anything at all. I’m not saying that ethologists actually believe that animals are simply rational calculating machines. I’m simply saying that ethologists have boxed themselves into a world where to be scientific means to offer an explanation of behavior in rational terms—which in turn means describing an animal as if it were a calculating economic actor trying to maximize some sort of self-interest—whatever their theory of animal psychology, or motivation, might be.
That’s why the existence of animal play is considered something of an intellectual scandal. It’s understudied, and those who do study it are seen as mildly eccentric. As with many vaguely threatening, speculative notions, difficult-to-satisfy criteria are introduced for proving animal play exists, and even when it is acknowledged, the research more often than not cannibalizes its own insights by trying to demonstrate that play must have some long-term survival or reproductive function.
Despite all this, those who do look into the matter are invariably forced to the conclusion that play does exist across the animal universe. And exists not just among such notoriously frivolous creatures as monkeys, dolphins, or puppies, but among such unlikely species as frogs, minnows, salamanders, fiddler crabs, and yes, even ants—which not only engage in frivolous activities as individuals, but also have been observed since the nineteenth century to arrange mock-wars, apparently just for the fun of it.
Why do animals play? Well, why shouldn’t they? The real question is: Why does the existence of action carried out for the sheer pleasure of acting, the exertion of powers for the sheer pleasure of exerting them, strike us as mysterious? What does it tell us about ourselves that we instinctively assume that it is?
Why Me?
It’s not just that scientists are reluctant to set out on a path that might lead them to see play—and therefore the seeds of self-consciousness, freedom, and moral life—among animals. Many are finding it increasingly difficult to come up with justifications for ascribing any of these things even to human beings. Once you reduce all living beings to the equivalent of market actors, rational calculating machines trying to propagate their genetic code, you accept that not only the cells that make up our bodies, but whatever beings are our immediate ancestors, lacked anything even remotely like self-consciousness, freedom, or moral life—which makes it hard to understand how or why consciousness (a mind, a soul) could ever have evolved in the first place.
American philosopher Daniel Dennett frames the problem quite lucidly. Take lobsters, he argues—they’re just robots. Lobsters can get by with no sense of self at all. You can’t ask what it’s like to be a lobster. It’s not like anything. They have nothing that even resembles consciousness; they’re machines. But if this is so, Dennett argues, then the same must be assumed all the way up the evolutionary scale of complexity, from the living cells that make up our bodies to such elaborate creatures as monkeys and elephants, who, for all their apparently human-like qualities, cannot be proved to think about what they do. That is, until suddenly, Dennett gets to humans, which—while they are certainly gliding around on autopilot at least 95 percent of the time—nonetheless do appear to have this “me,” this conscious self grafted on top of them, that occasionally shows up to take supervisory notice, intervening to tell the system to look for a new job, quit smoking, or write an academic paper about the origins of consciousness. In Dennett’s formulation,
Yes, we have a soul. But it’s made of lots of tiny robots. Somehow, the trillions of robotic (and unconscious) cells that compose our bodies organize themselves into interacting systems that sustain the activities traditionally allocated to the soul, the ego or self. But since we have already granted that simple robots are unconscious (if toasters and thermostats and telephones are unconscious), why couldn’t teams of such robots do their fancier projects without having to compose me? If the immune system has a mind of its own, and the hand–eye coordination circuit that picks berries has a mind of its own, why bother making a super-mind to supervise all this?
Dennett’s own answer is not particularly convincing: he suggests we develop consciousness so we can lie, which gives us an evolutionary advantage. (If so, wouldn’t foxes also be conscious?) But the question grows more difficult by an order of magnitude when you ask how it happens—the “hard problem of consciousness,” as David Chalmers calls it. How do apparently robotic cells and systems combine in such a way as to have qualitative experiences: to feel dampness, savor wine, adore cumbia but be indifferent to salsa? Some scientists are honest enough to admit they don’t have the slightest idea how to account for experiences like these, and suspect they never will.